

## **Storage War stories**

35+ years of data loss experiments

Steven Ellis - Red Hat

# LINUXCONFAU

### Agenda

#### A little bit of history

Including some technology overviews

#### War Stories

Names have been changed to protect the "innocent"

A couple of tips and tricks along the way



### Where to begin?









By Paul R. Potts - Provided by Author, CC BY-SA 3.0 us, https://commons.wikimedia.org/w/index.php?curid=4676174



### **Common Disk Connection Protocols**

SAS 12Gbps Serial Attached SCSI - Enterprise drives based on SCSI command set

NL-SAS 12Gbps SAS Controller with SATA based media, disk and performance

SATA Upto 6Gbps SATA - Mostly consumer based on Parallel ATA command set

SCSI Physical Interface and command set

IDE

8.3 MB/s - 133 MB/s - Parallel ATA command set



### **Enterprise Direct Connection Protocols**

SAS 12Gbps Serial Attached SCSI - Enterprise drives based on SCSI command set

SATA 6Gbps SATA - Mostly consumer based on Parallel ATA command set

PCIe 31.5 Gbps PCIe 3.0 x4 - typically uses NVMe command set

M.2 Form factor that can use SATA or PCIe (NVMe)



### Data Protection Techniques

RAID Parity and striping across block devices to create sets of redundancy

EC Erasure coding saves data in fragments with parity across different locations

Mirror Storage array level synchronous and asynchronous mirroring of data (DR/BC)

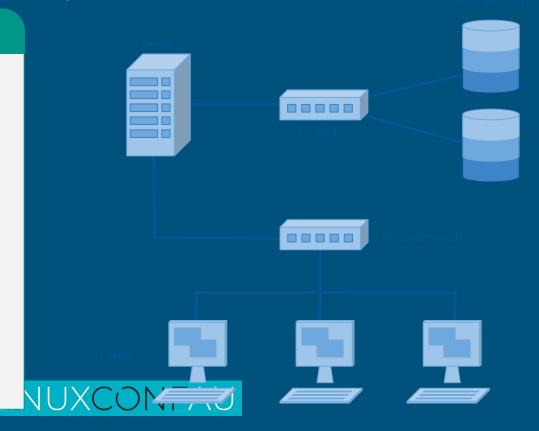
Multipath Redundant network paths from host to storage (dual HBA/NIC at host)

Cache Battery or super-capacitor backed up cache

LINUXCONFAU

### Block Storage Network - SAN

#### Storage Array


Modular or monolithic, Intelligent controllers

Redundant multi pathing, dedicated network

FC, iSCSI, FCoE, NVMe, IB

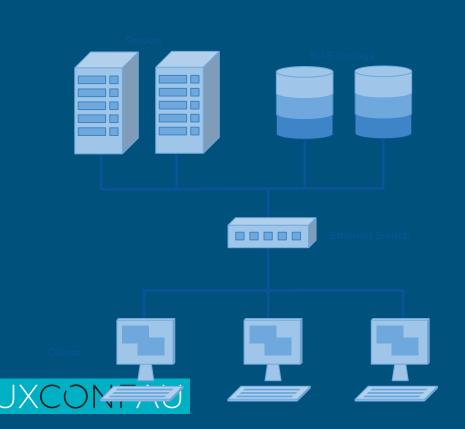
#### **Block Characteristics:**

- Very fast
- Data written in blocks
- Not human friendly
- Complex addressing



### File Storage Network - NAS

#### Storage Array (Filer)


Usually Modular, Intelligent controllers

Redundancy via dedicated or existing ethernet network

NFS, CIFS

#### File Characteristics:

- Pretty fast
- Data written in files
- Human friendly paths
- Standard networking



### **Object Storage - Cloud**

#### Content Addressable Storage

Usually massively scale-out

Redundancy via multiple data copies

REST API (http), Swift, S3

**Object Characteristics:** 

- Not usually fast
- Data written in objects
- Eventually consistent
- Human friendly metadata
- Cloud networking



### Data Protection Techniques

**RAID** 

Redundant Array of Independent Disks

RAID 0 - striping only, no protection



Performance only

RAID 1 - exact mirroring



Least capacity

RAID 5 - 5D+1P, parity blks striped









RAID 6 - 4D+2P, parity blks striped











2 disk fail



### **Data Protection Techniques**

EC Erasure Coding - K + M 2 disk fail EC 4+2 EC 8+3 3 disk fail 



### Data Optimisation/Reduction

Compression

Algo to reduce redundant blocks, whitespace etc (unstructured data)

Deduplication

Avoids storing duplicate blocks (CPU intensive, rehydration, mapping)

#### Storage Vendor Terms

- RAW Storage
- Usable storage
- Effective storage
- Decimal GB vs GiB



# Can I fsck that for you?



### 35+ years ago







### Beware aging / legacy storage

Bit Rot

Disk Rot

Flash failure

Mould

Old Interfaces (IDE / SCSI)

Hardware failure

Old Filesystems











### HDDs > SSDs

TRIM is critical to Flash Storage performance

Allows for elegant wear leveling

Makes it nearly impossible to recover "deleted data"

- On a HDD a deleted file is "often" just unlinked from the filesystem



### Data recovery tips



#### Isopropyl Alcohol + lint free cloths

- Dust / oils can kill an optical drive

#### USB based dongles to reduce reboots

- CD/DVD Drive
- Floppy Drives
- IDE Drive
- SATA

#### NAS / SAN / External USB for initial archive

- I prefer locally attached USB-3 drives

#### Linux tools

- SystemRescueCd / UltimateBootCD
  - http://www.system-rescue-cd.org/
  - <a href="https://www.ultimatebootcd.com/">https://www.ultimatebootcd.com/</a>
- ddrescue
- Izop
  - Fast lightweight compression
- testdisk / photorec
  - Recovery of filesystems and individual files off failed media



### Media Has Failed



USB based dongles don't always behave well with failed Hard Drives

- Time to dig out / borrow some old hardware
- Boot original hardware with a USB Live OS Image,

Always create a full copy of the original media

- ddrescue is your friend
- perform data recovery with a snapshot/copy of the backup
- Fail back to testdisk/photorec



### Raid is not a backup mechanism

#### Raid 0/1/10/5/6 can be implemented via

- Hardware raid controllers
  - Proprietary or in kernel drivers
- "Fake Raid"
  - Really a software driver dm-raid
- Software Raid
  - mdadm or LVM based



### Going Mad with MDADM Pt 2



### Original talk from Sys Admin Miniconf - LCA 2010 in Wellington Pinpointing the issue

- RAID / HBA Adapter
  - Firmware Issues
    - updates that can trash a Raid array
    - Raid metadata incompatible with different firmware versions
  - Legacy Adapter
  - Conflict with motherboard chipset

#### MDADM can be your friend

running XFS also helps



### Going Mad with MDADM Pt 3



#### Problem - Hardware Raid Controller Failure

- No spare compatible hardware
  - Trade Me or Ebay was the only option for parts
- Used a Linux box with a SATA/SAS HBA
  - Raid metadata was detected by dm-raid
  - Raid array assembled into a running state
  - Data recovered onto replacement hardware



### Going Mad with MDADM Pt 4



The Problem - recovering failed a RAID 5 array Software Raid-5 set via mdadm

- 4 x 3TB Drives
- Marvel 88SE9230 PCI-e SATA HBA
- DMA errors under high I/O
  - Or during weekly raid consistency check
- 2 Drives were removed from Raid Set

#### **BZs**

- <a href="https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1810239">https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1810239</a>
- <a href="https://bugzilla.redhat.com/show-bug.cgi?id=1337313">https://bugzilla.redhat.com/show-bug.cgi?id=1337313</a>

#### Solution

- 1 Change HBA
- 2 Check the Raid Set

  mdadm --detail /dev/md2
- 3 Confirm Event of 3 disks is close enough
   mdadm --examine /dev/sd[abd]2 | \
   grep Event
- 4 Force start a degraded array and cross

#### fingers

4 - Consistency check on LVM and filesystems



## Cluster fsck



### I need HA storage for/because

#### Beware

- there are dragons ahead
- may you live in interesting time
- life is to short to build a cluster of two

#### What is the use case

- RTO / RPO
- Workload performance requirements
- Any latency issues

#### HA / DR / Backup

- HA isn't a backup mechanism
- DR with high or variable latency
- Fail over / Fail back

#### Cluster of two

- Is a problem waiting to happen
- 3rd quorum node / arbiter is critical



### **HANFS**

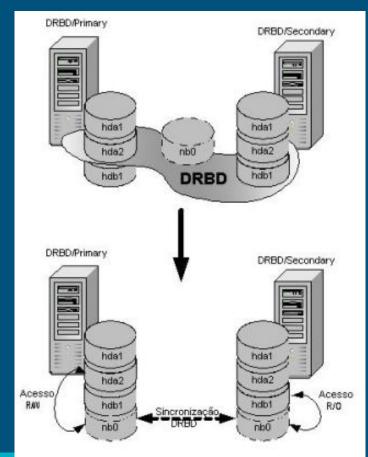
#### Approaches

- Active/Active
  - Requires a cluster aware file system
    - gpfs / gfs2
- Active / Passive
  - Shared storage over FC/iSCSI
  - Partition is only mounted on a single node
  - Pacemaker + VIP

#### Issues

- Application services are latency sensitive
  - Requirement sub 5ms
  - NFS failover is >= 30 seconds
- Scale
  - 2 node cluster couldn't cope with workload
  - Had to scale to 3 nodes with considerable added complexity
- No Live migration
  - Environment was virtualised




### **DRBDont**

#### DRBD

- Distributed Replicated Block Device

#### **DRBDont**

- Maintenance can be (was) painful
- Fail back issues
- Cluster of 2





### Multiple Single points of failure

#### Understand the requirements

- And the existing infrastructure
- Especially any SAN arrays
  - And the network infrastructure

#### Real cost of the solution

- What does an NFS head for the SAN cost
- vs project and operational cost of your"busy work"

Common statement is the existing storage infrastructure isn't reliable or meet the

RTO/RPO requirements of a project

 Secondary requirement is solution has to be virtualised

All Virtual infrastructure runs off the same SAN array

But you need to meet a higher SLA



### Software Defined Storage



#### Gluster

- Suits file centric workloads
- Simple to implement
- Can run virtually or on bare metal
- Scales elegantly
- Supports CIFS/NFS/pNFS
- Can avoid using the SAN

#### Ceph

- Object / Block / File
- Focused on bare metal
- See rook talk tomorrow for containers
- Vibrant community
- Replica 3 for performance
- Excellent EC implementation for scale



## What the fsck!



### **Dust and Humidity**

#### Existing machine room re-sized

- Shrunk to provide additional storage space
- New drywall installed
  - and sanded
- But they did install drop cloths over the racks

#### Outcome

- We had to vacuum out all the servers
- Almost every hard drive was replaced over next 9 months

#### Aircon unit leak

- Wet carpet in the machine room
- Temporary aircon couldn't deal with additional humidity from drying out carpets

#### Outcome

Almost every hard drive failed over next 6 months



### Expect the unexpected



#### Corrupted LVM

- Multiple LUNs from SAN
- Combined into a single VG via LVM

#### Issue - FC LUNs had been allocated to 2 systems

- No partition table was present
- Unix team had re-formatted the LUN
- LUN was in the middle of a Linux LVM VG

**Recommendation** - Always create a partition table

#### Corrupted filesystem

- xfs filesystem consistency issues
- Rebooting host inconsistent behavior

#### Issue - Poor grouping of LUNs

- Virtual Guests hosted on KVM
- Direct LUNs mapped to Virtual Guests
- Guests mounted wrong /var or /data

#### Recommendation

Unique LV UUIDs & mount by UUID



# Back to the future



### Everything old is new again

You will always need more storage

HDDs (rust) aren't dead (yet)

EDSFF for hyperdense flash storage

**Persistent Memory** 

At some point TCO for Flash will drop below rust

Cloud players will continue to innovate





### Questions?

sellis@redhat.com http://people.redhat.com/sellis

# LINUXCONFAU